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Abstract 

Using a linearized theory for the mixture of elas- 
tic solid and viscous fluid, two one-dimensional boundary 
value problems are posed and studied. 

The first problem is that of a stress-free halfspace 
to the face of which a transient temperature is applied. 
The second differs from the first in that its face is con- 
strained rigidly against mofion. 

these problems are given analytically and graphically when 
the temperature on the boundary is (a) a delta function, 
(b) a step function and (c) a ramp load. 

results for the corresponding thermoelastic theory is 
made. 

With the aid of the Laplace trans€orm,solutions of 

A comparison of results using this theory and the 
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step rise applied at 

the normal (to the boundary) stress is identically zero, 
all references showed that this stress is actually non- 
zero and exhibits a discontinuity at t = x, the spatial 
coordinate. For the step rise loading, [6] showed the 
stress discontinuity to be a jump of constant magnitude 
while [9], which incorporated the mechanical coupling 
term in the heat conduction equation (ignored in [6]), 
showed the jump*s magnitude decreased as it was propagated. 

was to replace the jump 
discontinuity by a discontinuity in the slope of the stress 
at t = x and at t = x + to. 

In spite of these contrasts, the conclusions of Muki 
and Breuer [9] were that except for a very short time in- 
terval after application of the thermal loading, and 
except for a very thin layer near the boundary, the use 
of the quasi-static field equations in transient thermo- 
elastic problems gave a reasonably valid estimation of 
the stress field, at least for metals. 

on a mixture of linear elastic solid and viscous fluid in 
a half-space to which a point load in temperature is ap- 
plied. Once we have found the kinematic and stress fields 
due to the point load we shall then consider the ramp and 
step loadings. This problem will correspond to the uncoupled 
transient thermoelastic problem of [8] and in a subsequent 
paper we shall attempt to assess the mechanical coupling 
effects. 

In section 2 we present the salient features of the 
linearized theory of Green and Steel [ 31 and Steel [4] 
for a mixture of isotropic linear elastic solid and vis- 
cous fluid. From this, we present in section 3 a 
nondimensional set of boundary value problems which are 

t = 0 .  

In contrast with the quasi-static theory in which 

In [8], the effect of to > 0 

In this paper we shall consider the effects of inertia 
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to be studied. 
Steel [4] terms a parameter occuring in the diffu- 

sive resistnnce vector a measure of diffusive force and 
we use this parameter as the basis for a perturbation 
of the equations of section 3 .  This procedure comprises 
section 4. The undisturbed equations (zero diffusive 
force) and the first order theory are solved explicitly 
in section 5 with the aid of the Laplace transform. 
After inversion, we discuss the stress and kinematic 
fields for the ramp and step loadings in section 6 .  

Application of mixture theories such as [a] to [4] 
are found in a variety of problems most notable of which 
are the problems dealing with flows in porous media such 
as soils and oil bearing rock layers. A similar phennom- 
enon occurs in the ablation of heat shields of re-entering 
spacecraft in which the rapid temperature rise causes gas 
bubbles to flow out of the material. 

2. Linearized theory for an isotropic elastic solid and 
a viscous fluid. 

The theory presented below is essentially that of 
Green and Steel [ 3 )  for a mixture of elastic solid and 
a viscous fluid. We assume that the mixture is chemically 
inert and that at each point of the spatial region occu- 
pied by the mixture and at each instant of time, there are 
material points of each constituent. Thus at each spatial 
point we define kinematic and mechanical quantities for 
each constituent and, in addition, we define mechanical 
and thermodynamic quantities appropriate to the total 
aggregate. 

Since we are concerned only with a linearized theory 
we shall refer all quantities to a fixed rectangular car- 
tesian coordinate system x = (x1,x2,x3) and thus take the 
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Lagrangian coordinates as applicable. 
inherent i n  t h i s  l inear iza t ion  process are that the  ma- 
ter ia l  points  of t he  s o l i d  component are displaced 
inf in i tes imal ly  from the i n i t i a l  equilibrium state and 
t h a t  t he  components o f  t he  f l u i d  veloci ty  vector are 
euually s m a l l .  

respectively,  so l id  and f l u i d .  Kinematic quant i t ies  
associated with the  s o l i d  a re  a displacement vector 

The assumptions 

W e  define a t  t i m e  t component dens i t i e s  p1,p2 

Y 

s t r a i n  tensor e = (eij), a rate of deformation tensor 
* Y 

d = (aij), and a v o r t i c i t y  tensor  f: = (rij) . Similarly 

for  the f l u i d  component we have a veloci ty  vector - 
-J 

v = (vi), a r a t e  of deformation tensor 

v o r t i c i t y  tensor A = ( A i j ) .  Mechanical q u a n t i t i e s  as- 
sociated w i t h  the so l id  are a p a r t i a l  stress tensor 
a = (aij) and a body force vector F = (Fi) w h i l e  for  

t he  f l u i d  we shall  denote these quant i t ies  by T = (rij) 
and G = (Gi), respectively.  An addi t ional  vector 
accounting fo r  the in te rac t ion  of the  components w i l l  be 
denoted by = (wi) and i s  termed the  d i f fus ive  resis- 
taace . 

Green and Steel [ 3 ]  introduce the thermodynamic 
quant i t ies ,  as applied t o  the t o t a l  aggregate, by temper- 
a t u r e  T, spec i f i c  entropy s, spec i f i c  Helmholtz free 
energy A, and the  heat f lux  g = (qi) 

re-derive the kinematic re la t ions ,  t he  cont inui ty  equa- 
t i ons  and the f ie ld  equations fo r  each mixture component. 

f = (fij) and a 
w 

A 
c 

d.3 

A 

-s 

A 

I n  t h e  remainder of t h i s  sect ion we  list b u t  do not 

* A l l  subscr ipts  run over values 1,2,3, and, when 
repeated indicate a sum on the index over 1,2,3. 
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Additionally, we pose the constitutive equations*, the 
energy equation and the entropy-production inequality 
as given in [l]. 

and strain-displacement relations are 
For the solid constituent, the velocity-displacement 

and the conservation of mass requires that 

- 
where 
sity of the solid component. 

solid and f l u i d  components are 

p1 is the uniform initial value of the mass den- 

Rate of deformation and vorticity relations for the 

(2.3a) dij = y 1 ( u ~ , ~ + u ~ , ~ ) ,  rij - 3 1 (ui .-u ) , 3  j,i 

To these we also add: 
continuity equation for the fluid 

equations of motion of mixture 

- W 9 PIFj 
'ij,i j 

= o  

= P I  

= P2 
- 

3 

2 
at 

at 

(2.4) 

(2.5a) 

(2 533) 

*we use constitutive equations as presented in [ 4 ] .  
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enerqy equation 

- - - 
where p = p1 + F,, p being the to t a l  density.  Barred 
quan t i t i e s  refer t o  values taken a t  equilibrium. 

and f 
components of 
t o  xi are indicated by ,i as a subscr ipt .  

Symbols 
refer t o  symmetric and skew symmetric 

and partial  der ivat ives  w i t h  respect 
[ i j l  (ij) 

f i j  

The cons t i t u t ive  equations to be used are given by 

+ a(ui-vi) p 1  IjJ = - -  '2 a e - 
P P 

1 kk, i  -b Z- &2P2,i i 

+ DEijk(~-vk) - D"(rij-A* e ) ,  (2.11) 
1 3  
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(2.12) 

In these relations all coefficients represent ma- 
terial constants, Eijk is the alternating tensor and 
bars refer the appropriate quantities to equilibrium. 
To identify the symmetric and skew-symmetric partial 
stress components as used in C2.6) with the expressions 
(2,11), (2.12) we state that the last two terms of (2.11), 
(2.12) are skew-symmetric. 

The material Constants, by virtue of the entropy- 
production inequality, are required to satisfy 

k - > 0, (Ki)2< - 4akG . (2.13) 

In addition, by definition of state of equilibrium, 
we have that 

(2.14) 

Before considering specific problems we note that 
the energy equation (2.6), upon substituting (2.7), (2.8), 
and (2.14) , and using (2. I) to (2.4), becomes 

(2.15) 

To close out this section we shall quote the unique- 
ness theorem presented by Atkin, Chadwick and Steel [l]. 

Uniqueness Theorem. Let B be a bounded regular region 
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of three-dimensional Euclidean space occupied by a m i x -  
t u r e  of the type j u s t  presented i n  equations (2.1) t o  
(2.15). By aB we denote the boundary oE B and by 
Bo the i n t e r i o r  region of B. By regions B(Bo) we 
s h a l l  mean a l l  pairs ( P , t ) ,  such tha t  for t > 0, P 
is a material point  i n  B(Bo) .  I n  addition, we take 

I 

- 
n t o  be a un i t  outward normal on aB and we use aBl, 
aB2 as a r b i t r a r y  subsets of 33 w i t h  complements 
ai$, aE2, respect ively.  

s a t i s f y  
L e t ,  i n  addi t ion t o  (2.13), the ai, 1 < i < 8 ,  - -  

( 2 6  2 a1 - - ;") + a4 + - a  > 0, - 3 3 5 -  
P 

(2.16). 

- 

P P 

Then there exists a t  m o s t  one set of functions 
05 class C , and wi,T of class C2 on i3 w h i c h  
s a t i s f y  (2.4), (2.5) and (2.15) on Bo, (2.1), (2.2) 
and (2.3) on B and the following i n i t i a l  conditions 
on B at t = 0: 

vi,p2 1 

A - A  
= F2  + pa, T = T + T. A 

p2 
- A - A 

w = wi, ui - ui, vi - vi, i 
(2.17) 

I n  addi t ion these functions s a t i s f y  the boundary 
conditions for t > 0: 

A 

ui-vi = Ri, (a. .m. .)ni = 1 
j 

A 
on aB1 (2.17a) 

1 3  1 3  



-9- 

A A 
ui = ui, v i = vi on aB, (2.17b) 

A T = T + e  on &, (2.18a) 

(2.18s) 

The quantities wearing carets are known functions and the - - 
quantities pl, p2 and 5 are positive constants. Of 
the choices presented in (2.17) , (2.18) either aB1, aB2 
or their complements may 3e empty or the entire boundary. 

in the remainder of this paper we shall study the pair 
(2,17a), (2.18a) as one problem called problem A, while 
by problem B we shall mean (2.17b) together with (2.18a) . 
anteed by the above theorem, our application is to a 
half-space and we therefore require that regularity con- 
ditions at infinity be imposed upon our stress, displace- 
ment and velocity fields. 

For the one-dimensional applications to be considered 

Finally we note that although uniqueness is guar- 

3 .  Statement of the problem. 
Departing from the indicia1 notation, let us iden- 

tify Cartesian coordinates as (x,y,z) and consider 
our body as occupying the region x > 0. We assume that 
the body is subjected to a time-dependent temperature 
field of the form 

I 

0 = @(x,t) (3 .1)  

and is constrained to uniaxial motion so that the dis- 
placement vector of the elastic solid has components 
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while the fluid velocity vector becomes 

v = [v(x,t), 0, 03. (3.3) 

The temperature field 8 of (3.1) is related. to 
the temperature T(x,t) by 

- 
T(X.t) - T 

T 
@(X,t) = - (3.4) 

Substitution of (3.1) to (3.3) into equations (2.1) 
to (2.4) shows that we may write 

a t a x  J 

aw 

a 

- -  
ex - ax I 

dx = =ex= - 
(3.5) 

as the only non-vanishing kinematic relations. 
tion we have that all other strain, rate of deformation 
and vorticity components are identically zero. 

form 

In addi- 

The constitutive relations (2.10) to (2.12) take the 

W = W  = o ,  Y z J 
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( P P l  aw 
ox(x,t) = [ 2 ( u  +a ) - - - - a 41% 

P 
1 5  

- 
ay(x,t) = a,(x,t) = - ( P P l  - P - - a 4 a x  1" 

+ a $ 3 3 + ( ~ +  ... ae)(p2-ij*) + al, 
P 

(3.10) 

7 - 7  - 7  =o ,  (3.11) 
Xy XZ Y Z  

= *  = o .  (3.14) 
TT xy = *xz Y= 

The equations of motion (2.5) and the heat equation 
(2.15), in view of the constraints (3.1) to (3.3) become 



-12- 

- a2w - - w  aOX - 
ax x = PL at2 (3.1Sa) 

(3 . 15b) 

provided (3 .4)  and (2.9) are used. 

value problem we prescribe that €or 
To complete our statement of the initial-boundary 

t 10 

In addition, we require that on the boundary x = 0, 

either: 

(problem A) 0(0,t) = f ( t )  , 

crx(o,t) + 7TX(0,t) = 0, 

or: (problem B) 

Q(O,t) = f(t) , 
aW = 0, 

v(0,t)  = 0, 

(3.18a) 

( 3.18b) 

(3.19a) 

(3.19b) 

( 3  . 19c) 
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while as x + =, we s t i p u l a t e  t h a t  

A t  t h i s  point, we f ind  it expedient t o  introduce 
dimensionless var iables .  To do so, we note t h a t  S t e e l  
[ 4 ]  defines 

wherein he uses the  r e l a t ion  

(3.22) 

A d i r e c t  subs t i tu t ion  of (3.21) and (3.22) i n t o  
(3.9) y i e lds  

which, i f  t he  material w e r e  elastic, would lead us t o  
expect P2$.2B3 t o  play the  role of t he  Lame constants 

(X+2P) while ag? would play t h e  role of (2W3A)a  

where a i s  t h e  coef f ic ien t  of l i nea r  thermal expansion 
of an elastic material. 
a veloci ty  

8 

Keeping t h i s  i n  mind we  choose 

(3.24) 
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which would be the irrotional velocity of sound if the 
material were elastic. 
define 

Since by (2.16), a7 < 0 ,  we 
I 

(3.25) 

By a dimensional analysis we have that (3.24) is a velo- 
city while (3.25) has dimensions of length squared per 
unit time. Thus, if we take 

2 W - 2 
a = - -  w 

c1 ’ to - -2” 
=1 

(3.26) 

then a dimensionless x-coordinate and time are given by 
9 

t cit 

““0 (PJ 

clx , 7 5 - = -  < = - E -  X 
2 .  a w  2 (3.27) 

Proceeding further, we introduce non-dimensional 
partial stresses, solid displacement, fluid velocity, 
densities and diffusive force 

(3.28) I 
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In addition, the following quantities are conveniently 
grouped: 

Incorporating a l l  of these changes leads us the 
following summary: 

constitutive equations 

(3.30b) 
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equations of motion 
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i n i t i a l  conditions 
For 7 < 0, we  take - 

boundary conditions 
a t  5 = 0: 

- ,a.L A 
either (-0(0,7) = f(7) - - 

T 

or 

- fo, A 
(0(0,7) = f ( 7 )  - - 

T 

(3.36) 

(3.37) 

V ( 0 , T )  = 0; LA 

We now introduce the approximations t o  be followed 
i n  the remainder o f  t h i s  paper and ca l l  the resulting 
equations the f u l l  uncoupled theory. I n  subsequent 
reports, equations (3.30) t o  (3.38) w i l l  be studied as 
they stand b u t  for a f i r s t  approximation we postulate that 
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(a) the stress components depend upon the fluid 
density only through the initial porosity coefficient 

(b) the fluid stress components depend upon the 
f , 

solid strain only through the initial porosity coeffi- 
cient f, 

(c) in the heat conduction equation ( 3 . 3 3 ) ,  the 
A 3% aV mechanical coupling terms, El -=, E2 

ignored, 
can be 

(d) the diffusive force parameter - is small, 
p 1  

atO 

p 1  
i.e. -<  - < 1. 

Mathematically, the approximations (a) and (b) let  
us neglect the terms 61q2(S,T), 62q2(5,~) and 

b1 ( 5 , T )  in (3.30a) to (3.30f). Approximation (e) 
enables us to determine the temperature G(S,T )  inde- 
pendent of the so l id  and fluid components and we may 
therefore treat e ( % ,  7) as a known function when solving 
(3.31) and (3.32). 

aW 

4, Perturbation in small diffusive force. 

atO 

p 1  
Assume that €or - < < 1, - 
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and incorporate these expansions into equations (3 .30)  
to (3 .37)  along with the assumptions (a) to  (e) of the 
l a s t  section. Then 

provided we define 

(4.5) 
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The quant i t ies  wo, vo, q20 and Qo must satisfy 

w h i l e  wl, vl, q21 and Q1 are solutions of 

7 

(4.10) 

(4.11) 
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For ease of manipulation we have introduced i n t o  (4.6) 

and (4.9) t h e  constants 
A 

Y = 1 + fao and p2 = s2p2/Fl. 
To complete the zero and f i r s t  order problems we 

and 0 j=0,1 
j’ 

require  t h a t  t he  functions 
s a t i s f y  the  i n i t i a l  conditions 

w j, v j, T 2 j  

= 0 for  t < 0, j 4 , l  (4.12) - j 
- q2j = Q 

aw - 
j - j 

and one of t he  following sets of 3oundary conditions: 

e i t h e r  

(4.13) 

(4.14) 1 CI (0,~) + rXj(O,T) = 0 j = O , l  

-$- (0,~) - vj(0,  7) = D j=o, 1 

x j  

aw . 

Problem A 

I n  e i t h e r  case, i .e., (4.14) or (4.15) , we also ask t h a t  
and 

x j  as 5 approaches in f in i ty ,  Qj, wj,  v j ,  r12j, a 

j=O,l a l l  approach zero. 
The technique employed f o r  t he  solut ion of these 

=xj, 

equations is  t h a t  of t he  Laplace transform with respect  



-22- 

t o  t i m e .  Hence, we define 

with t h e  inverse r e l a t ion  

(4.16) 

(4.17) 

where r is  the  Bromwich contour i n  the  complex p-plane. 
The appl icat ion of t he  transform (4.16) t o  these 

problems i s  s t r a i g h t  forward. Res t r ic t ing  ourselves t o  
the  zeroth order t e r m s  we  f ind t h a t  solut ions of (4.7) 
and (4.6) which s a t i s f y  (4.13) and the  regular i ty  con- 
d i t i ons  as 5 approaches i n f i n i t y  may be w r i t t e n  ( i n  
the  transform plane) as 

provided 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

If (4.10 and (4.20) are t o  be solut ions of problem A 
o r  problem B, then Bo(p) and Do(p) must be chosen so 

t h a t  (4.14) or (4.15) are s a t i s f i e d .  Thus, i f  we  apply 
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(4.16) t o  (4.14) and subs t i t u t e  (4.19) and (4.20) i n t o  
the  transformed equations a complete solut ion of problem 
A ( in  the  transform plane) i s  given by (4.19), (4.20) 
pro$rided 

d2f (PI - , (4.22) 
d l  (B+U ?(PI 

Bo(P) = 

The zeroth order p a r t i a l  stresses and f l u i d  density 
a re  then obtained from (4.19), (4.20) by means of (4.3), 
(4.4) and (4.8), i.e. 

(4.24) 

By t h e  same procedure the  solut ion of problem B is 
obtained i f  

W e  are now i n  a posi t ion t o  inver t  t he  zeroth order 
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displacement, velocity, partial stresses and fluid den- 
sity components for both boundary value problems. 
doing so, we anticipate the requirement of transformed 
zeroth order quantities needed to determine the first order 
terms in (4.3) to (4.5) and (4.9) to (4.15). That is, to 
find w,(S,p) and 3,(5,p) we must solve 

Before 

(4.27) 

(4.28) 

subject to (4.14) in problem A and (4.15) in problem B, 
as well as the regularity conditions as 5 -.+ 0 9 .  

We first note that by (4.27) and (4.13), 

(4.29) 

so that temperature enters our problems explicitly only 
in the undisturbed term G0(S,p) and implicitly through 
Go(5,p) and *ro(S,p) 

regularity conditions as 4; approaches infinity of the 
f o m  

Equations (4,261 have solutions that satisfy the 
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A + -  
P3'2 (p-Y) 

IC 

(4.31) 

i n  which we have introduced F1(p) defined by 

I n  these expressions the constants of integration 
B1(p) and D1(p) are t o  be chosen so that  either (4.14), 
for problem A, or (4,15), for problem E, are satisfied.  
I n  so choosing we must use Bo(p) and Do(p) as given 
by (4.22) and (4.23) i n  the A case and (4.25) i n  the B 
case. 

For problem A, we apply (4.16) t o  (4.14) and substi- 
tute  (4.30) and (4.31) directly. After some algebra we 
achieve for w1(4;,p) and cl(S,p) 
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58 - - y f i  
e $ +  Bo(p)e S 

(4 .33)  
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(4.34) 

wherein BO(p) is given by (4.22). 
Turning now t o  problem B we  f ind  that i f  

(4.35) 

a re  used i n  (4.30) and (4.31), then (4.15) are s a t i s f i e d  
provided 

subs t i tu t ing  t h e  displacement and veloci ty  expressions 
(4.30), (4.31) i n t o  (4 .3 ) ,  (4.4) and (4.11) a f t e r  inver- 
sion has been accomplished. 

f i r s t  i s  the  fact t h a t  second and higher order t e r m s  may 
be Eound a t  w i l l  by the  methods employed here.  

solut ions (4.18) t o  (4.20) and (4.30) t o  (4.31) are va l id  
%or any imposed temperature d i s t r ibu t ion  (7) provided 
f(p)  ex is t s .  I f  we  take f(p) = 1, then the  f i e l d  var- 

v etc, are those t h a t  r e s u l t  from ia3les wo, vo, wl, 

Bo (PI , Do (PI are as given i n  (4.25). 
Par t ia l  stresses and f l u i d  density can be found by 

To conclude t h i s  sect ion we make t w o  remarks. The 

The second remark an t i c ipa t e s  the  f a c t  t h a t  these 

- - 
- - - - 

1' 
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a thermal boundary loading of the form 

and these same quantities can be related to those which 
result from any other loading, say 4 ( 7 ) ,  by means of a 
convolution integral. 

of (4.18) to (4.20) and (4.31), (4.32) when f(p) = 1. 
Using this fact, we devote section 5 to the inversion - 

- 
5. Inversion for the case f (p)  = 1. Inversion is 
readily accomplished with the aid of tables and in terms 
of some formulae listed below. 

Define 
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by no. 4, p. 223 and no, 9, p. 242 of [13], 

c 2  

+ k2&)]drH(7)  ( 5 . 7 )  

by no. 1, p. 229 and no. 12, p. 246 of [13], 

-I- k 2 P ) ,  (5.8) 
kl k k + k 2 T  

- -  k: 
4t 

Erfc(- e I4(kl,k2,7) = - k2e 
&ir'iT?- 2 JT 

by no. 12, p. 246 of [13]. 
E r f c ( X )  is the complimentary e r ro r  function defined by 

and is  re la ted  t o  the e r r o r  function $ ( A )  by 

E r f c ( 1 )  = 1 - @ ( A ) .  ( 5  10) 

Some useful  proper t ies  of these functions (see [14], for  
example) a re  
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Erfc (=)  = 0, Erfc(0) = 1, 

Q(-) = I, q o )  = 0, 

@ ( - A )  = - * ( A ) ,  

Erfc(-A) = 1 -I- * ( h )  = 2 - ErfC(A), 

(5.11) 

and any others  w i l l  be l i s t e d  as required. 

and follow w i t h  t h e  f i r s t  order t e r m s .  Problem B is 
t r ea t ed  separately.  

t u r e  f i e l d  becomes, by means of no. 1, p. 245 of [13], 

W e  inver t  t he  zeroth order t e r m s  f o r  problem A f i r s t  

Beginning with (4.18) ( for  z(p) = 1) , t he  tempera- 

(5.12) 

Equations (4.19) and (4.20) can be inverted d i r e c t l y  
a f t e r  (4.22) and (4.23) are used t o  replace B0(p) and 

Do (PI . I n  t e r m s  of (5.1) t o  (5.5) we have 

and 
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To calculate 
Turning to (4.24) 

2 d,s 
(5.14) 

the partial  stresses we require 
w e  have 

q20(C, 7) . 

or, what i s  equivalent, 

(5.15) 

From (5.14) and ( 5 . 3 )  , (5 .4)  we have 

(5.16) 

wherein kl = SB/s2 . Interchanging a/akl and integra- 
t ion ,  and using 
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we a r r ive  a t  

as the  f i n a l  form for  
i n  (5.16) is av,(E;,r)/%. 

(4.4) and note t h a t  a l l  quan t i t i e s  needed t o  describe 
oxo (5 ,T )  and 7rxo ( 5 , T )  are known. 

the  algebra is longer. Without fur ther  delay, the  inver- 
sion of ( 4 . 3 3 )  with the  a id  of (4 .22)  gives 

q20. W e  note t h a t  t he  integrand 

To complete the  zero order terms we r e t u r n  t o  (4.31, 

The f i r s t  order t e r m s  a r e  eas i ly  inverted although 
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are listed below. to a29 Coefficients all 

+] , - 
2 

1 
B(s -8) 

dl ( s 2 - 8 )  (S2+2@) d2S a =  + 
l2 2B2Y (s2+B) Y (s2+8)  

d2 [B”+:s4 
B2 S Y (s2+P, S 

- dl [S4(S2+82) + B ( B + l j  (B2+2s 
2 4 2  

= -  
Y(s -B 1 a15 

9 
+ s6 (S2+B2) 3 

P4 (s2-B) 
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+ s2 1 ,  
28 (s2+B) 

2 2 
B4) 

d 

B + +4+2s B + , 
5 

1 a = +  
20 B2 %/T(s2+B) S2-B 

6 
d2 

2 4 2 y a 2 4 =  Y (1-B) 22 28 (s2+B) yf.3 ( s  -B ) 

a = -  (32 IF = -  dl 
' a23 

4 2 '  a = d l , a  = -  
Y(s -B 28 29 (5.19) 
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Proceeding i n  the same manner w i t h  the inversion of 
( 4 . 3 4 )  we have 
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with the bk defined by 

. #  f 5 1 ,  
s2+8 
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d2s2 dls2 

s -B 
’ b21= - (5.21) 4 2 .  - 2 2  B (s +B) 

To compute the par t ia l  stresses oxl, 7rX1, and t h e  

f l u i d  densi ty  q21 we require  both aw,/aC and avl/a4;. 

By (5.18) and (5.20) these quan t i t i e s  are 
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+a22 

and 
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The next s tep  i n  the process i s  to use (5 .23 )  i n  (4.11), 
or its equivalent, 

(5.24) 

The integration o€ (5 .23 )  i s  accomplished d irec t ly  i f  we 
note that  d i f f erent ia t ion  w i t h  respect to  5, kl,  or k2 

may be interchanged w i t h  the t i m e  integral ,  and, i f  we use 
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(5.25) 

Thus, 
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4. b17 

The p a r t i a l  stresses rX1, oxl are given by 

A 

(5.26) 

i n t o  which (5.22), (5.23) and (5.26) can be subs t i tu ted  
t o  give the  stresses directly. '  

This completes the  inversion of the  deformation f i e l d s  
fox t he  case of a delta function thermal loading and bound- 
ary conditions of problem A. The inversion i s  complete i n  



the sense that these quantities are stated explicitly as 
functions of the integrals, 11, I3 and I4 and these 

in turn are elementary integrals expressible in terms of 
error function. 

By an anologous procedure, we invert the zero and 
first order terms associated with problem B (for 
Return to (4.19), (4.20) and use (4.25) in them. Then 
inverting directly gives 

f(p)=l) 

and 

Fluid density ?120(5 ,T)  is found from (5.15) and (5.29) 

to be 

(5.30) 

As in problem A, 
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SL 
(5.31) 

(5.32) 
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(5  33) 

(5.34) 

Returning t o  ( 4 . 3 ) ,  (4.4) to compute the stresses we 

again require awl/%, av,/ag and r12f. By (5 .33)  and 

(5.34) the first two are 
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(5 e 36) 
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and (5.25) t o  be 

58 / 5=- 2 
S 

(5.37) 

Subst i tut ion of these functions i n t o  (4.3), (4..4) completes 



the zero and first order solutions of problem B. 

6. Examples of temperature loads. 

us consider in some detail the stresses, displacements and 
velocities which result when the boundary temperature 
A 
f(7) is the ramp loading 

As an application of the results obtained so far let 

7 

0 

A 
f(7) = ';-H(TO- i) 4- H ( 7  - To) 

where 7 is a known "loading time". 
The relation between the field variables of section 5, 

A 
e.g., wQ(5,7), found for f(7) = 6 ( T )  and the response of 
the same function due to (6.1) is the convolution integral 

. o  

* TA 
w,(S, 7) = \of(7-s)wo(<,~) ds 

* 
where, for purpose of illustration, here w,(s,T) is the 
response due to (6.1) and 
last section. 

wo(S,s) 

Since all of the stresses, displacements, etc., of 

is the response of the 

section 5 are expressed in terms of the integrals 

tial derivatives, integrals of the type (6.2) require us 
to compute 

11, 
and Id., as defined in (5.1) to ( 5 . 8 ) ,  and their par- "3 

in order to obtain the stress and displacement fields due 
to the loading (6.1) . A 

In general then, for a thermal boundary loading f 
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we define integrals 

T A  
L,(kly 5, T,kZ) = io f (7 -t*) I,(kl, 5 , t '  ,k2) dt *, G = 1,3 (6.3) 

and obtain the response such as (6.2) by simply replacing 
the lass by the corresponding La and their partial 
derivatives, 

For the loading ( 6 . 1 ) ,  in particular, we follow the 
scheme just mentioned and define 

and 

where we have used (4.16) on ( 6 . l ) ,  (5.1), (5.3) and (5 .4 . ) .  

ferentiation of fa with respect to kly S or k2 may 
be interchanged with the integration so that for example 

Before proceeding we note that in (6.4) partial dif- 

In addition to (6.4) (6.5) and (6 .6 ) ,  we record here 
additional relations that are useful in evaluating the 
solutions of section 5. 
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From t h e  convolution (6.4) we have 

nonzero; (6.7) ' To fo r  kl 

fo r  T~ nonzero ( 6 . 8 )  

(6.1C) 

Formulae for  
kl or 7 vanish are of the  same form as for  L1 i f  i n  
(6.7) t o  (6.10) we replace Il by I3 and the arguments 
S+'r0, T by 5 ,  T - T ~ ,  respectively, i n  those in t eg ra l s  I1 
containing S - i - 7 ~ ,  7. , 

L3(kl, 5 ,  T,k2, To) and the spec ia l  cases when 

0 

Before discussing L4, we note t h a t  t he  in t eg ra l  
Il(kl,S, T,k2), as defined by ( 5 . 6 ) ,  carries the  restric- 
t i o n  that it is  non-zero only if 7 > 5. Similarly, by 
(5.7), 13(kl,S,T,k2) i s  zero if 7 < 0. Since,  i n  
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as expZaine8 abOve, .inteqr.a.ls 1 .  
of the type 

L3 determining 
I (k ,E;,7-Tc) will be encountered, it must be remembered 
,*hat: such integrals, for np.-zero values, require 7 > To. 

3 1  

From ( 6 ; 5 )  follows 

for 7 0 7 nonzero: 

(6 12) 

Returning now to the expression (6.2) when (6.1) is 
due to (6.1) used we have that the response 

is of the form 
wo (5,7, To) 

if the wQ(s,7) in (6.2) is the displacement given fit 

(5.13). 

To evaluate (6.13) we use (6.7) to (6.10) for 
LI 

and L3. This in turn requires evaluation of 11, 13, 
and, in other expressions similar to 
as well as their partial derivatives. Equations (5.6), 
(5.7) can be evaluated in a straightforward way and are 
expressible in terms of the error function and its com- 
plement. We do so now. 

wo ( 5 , 7 ,  TQ), I4 

By (5.6) we have, after an integration by parts, 
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2 k2 k p - 5 1  k2  k2 (T-5)  + e - 2  e Erfc(k2 ,/-) 
k:-kl k2-kl 

if 7 > f kl,k2 not  both zero, 

(6.14) 

(6.15) 

2 -  1~(0,5,7,o) = --.JT-< when 7 > 5 
JF 

2 k2~+k25 
Erfc ( -  + k 2 f l ) H ( T )  i f  kl,k2 k2 --e 

kz-kl 2 f l  

are not both zero: (6.17) 
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Additional formulae t o  (6.14) , (6.15) , etc.--are re- 
quired, such as t h e i r  first and second der ivat ives  with 
respect t o  kl,k2,5. A s  required by need we s h a l l  com- 
pute them a t  that  point.  

computer t o  determine as functions of s p a t i a l  variable,  
5 ,  and t i m e ,  7, t he  values of wo,w1,v0,vl,r120,1121,~x0, 

A program has been wr i t ten  €or the  CDC 3600 d i g i t a l  

and temperature Go under the  applied 
A 

~ X 1 J T X 0 ~ * X 1  

temperature load €(T )  specif ied by (6.1) fo r  To zero 
and nonzero. Both problems A and B have been studied. 

To program a functinn such as W , ( % , T , ~ ~ )  given 
by (6.13) we required subroutines f o r  11, 13, I4 and 
t h e i r  p a r t i a l  der ivat ives  with respect t o  their arguments. 
Such functions i n  t u r n  required accurate values of 
and E r € c ( k )  . For t h i s  purpose we  used (see [ 141) the  
power series 

@(A) 

Q 

A2*+' i f  X < 3 (6.19) + ( A )  = - 2 e-h2 1 2" 
1 3...(2n+l) 

l/F n=O 

and the  asymptotic expansion fo r  Erfc  (A) 

W 

f i  Ae A2 E r f c ( A )  = I+ (-1) 3***'2m-1) when A > 3 .  (6.20) 
m = l  (2X2Irn 

By checking with the  t ab le s  [I51 we w e r e  able t o  maintain 
a t  least 10 place accuracy fo r  a l l  values of t h e  argument. 

Input data required consisted of t h e  thermal expansion 



A 
coefficients dl, dZ, the initial stress ao, the porosity - 2 f = p 2 b ,  the initial densities pl, p2, the parameter 
the diffusive force parameter atO/i;l and the loading 
time for the boundary temperature, To. 

we considered the case when 

- - 
s , 

To check the validity and accuracy of our solutions 

(6.21) 2 A I 

cTo = 0, p2 = 0, s = 0, dl = -1 

which, when used in (3.29) tq (3.35) and the boundary 
conditions for problem A, i.e., (3.36) , reduces the 
exact problem specified there to the transient uncou led 
(E1-"2=O) thermoelastic problems of [6] and [ 81 if f (7) 
is given by (6.1). 

the complete solution and in fact 

! 

R 

If (6.21)  is used, the zeroth order solution is 

- a,, .- 
a7 - vo 

in the region. 

(6.22) 

The results of ~ 6 ]  show that oxo\>, T),  plotted versus 
7 for 5 fixed, exhibits a jump discontinuity at 7 = 5 .  
By [SI this same stress becomes continuous at 7 = 4 and 
at 7 = 4 + To for 7 > 0 but has discontinuous slope 
at these points. 

3:t is natural to expect that our results should 
approach those of [6] and [ e ]  if one were to choose 

01, s z  and p2 near zero. To illustrate this we took as 
one set of fluid material properties 

0 

d2, 

A second set of parameters were chosen so that 
be of the 5ame order as 

p2 would - 
pl. 
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Thus 

- 
d2 = 0, c11 E-- 0, s = 2, p2 = I. (6.24) 

For the sets (6.231, (6.24) the so l id  material parameters 
w e r e  taken t o  approximate the thermoelastic values: 

- A -4 dl z= -1, p1 T=. 2, Go == 10 . (6.25) 

Eefore discussins  and comnarincr our r e s u l t s  with 

those of 161 and [€?I  we  begm by showing a p lo t ,  i n  f igure 1, 
of Qo(5,~,T0) a t  S ?= 1 and for  To E= 0, 1/2, 1 and 2. 
The temperature 
since it i s  independent of mater ia l  properties,  i s  the 
same d i s t r ibu t ion  used. i n  f 6 1 and f81c 

eo is the  same €or problems A and B and, 

A 
Turning now t o  the stress o x o ( < , ~ )  - oo for  problem 

A we show, i n  f igure 2, t he  stress a t  5 = 1 €or the 

parameter valv.as (6.23) and (6 .25 ) .  The e f f e c t  of a non- 
zero p2 is to eliminate the jump discont inui ty  found 
i n  [6]  for  tlie s t ep  loading 7 = 0. Tn i ts  place we have 
a slope discont inui ty  a t  
no longer plane t o  the boundary b u t  is rounded as one ap- 
proaches from the r i g h t .  

I 

0 
7 = 5 / f l .  The shock front  i s  

'_ 

A 
The slope of Oxo ! 5 , 7 )  -a0 a t  7 = 5+/JY changes 

continuously f r o m  a f i n i t e  value t o  i n f i n i t y  whereas the  

slope from the  left, i.e., as 7 -+ S'/,,/Y, is f i n i t e .  
The overa l l  character is, as expected, l i k e  tha t  found 
i n  [C;] with the exceptions noted. 

When T o  > 0, the  slope d iscont inui t ies  w h i c h  occured 

i n  [ a ]  a t  7 = 5 and 7 = 5 f To disappear i n  our case 
and o,(S,T) - oo has a continuous slope at  a l l  points.  

t ies  given i n  (6 .24) ,  (6.25) . H e r e  the shock has diss ipated 
even fur ther  for T~ := 0 and when 7 > 0 the  stress is 
c lea r ly  continuous with continuous der ivat ives .  

A 

I n  f igure 3 we p lo t  t he  same stress using the  proper- 

0 
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To cmfrim these r e s u l t s  analyt ica l ly  we returned to  
(4.3) and substituted for wo, Qo and ri2* the expres- 
sions obtained when (6.1)  i s  the loading. Hence, 

where by (4.1€?) ,  (5.3), (5.17), (6 .1 ) ,  (6 .7)  to (6 .10) ,  and 
(6 .13)  

( 6 . 2 8 )  

(6.29) 
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A long but straightforward computation indicates that 
when To = 0, both Qo(C,T,O) and '120(5,7,0) are contin- 
uous and differentiable  at  7 = g / d .  The discontinuity 
i n  a/aT[a (5,T,O) -ao] therefore comes from a2wo/aTa5. 
If one expands (6.29) for TO = 0 we have that 

A 
XO 

- 2 Erfc(-))(T) 
2 l/;i 

and it is  readily confirmed that (6 .31 )  is  continuous a t  
7 = provided. # O .  By the expression Wz(SJ5/l / ; i )  
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we shall mean 

(6.32) 

Thus differentiating (6 .31)  with respect to 7 and 
taking the limit as 7 .& S ' / f l  we have 

which exhibits the discontinuity in slope at 
unless 

7 = 5 / f l  

(6 .34)  

For the parameter sets (6 .23 ) ,  (6 .24)  and (6.25), (6.34) is 
nonzero so that a discontinuity in slope at 
found. 

7 = 5 / f l  is 

A 
Figure 4 is a plot of the stress oxo(5,T) - a. for the 

parameters given in (6.25) and d2, s and B chosen to satisfy 
(6 .34) :  i.e., 

As expected,all discontinuities have disappeared and the form 
of the response for different To is the same. 
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The next set of graphs, f igures  5 t o  10, are the s o l i d  
s t r a i n ,  &vo/aE;, and the f l u i d  rate of deformation component, 
avo/aS, p lo t t ed  versus 7 a t  5 = 1 and f o r  the three 
parane'cer sets (6.23) t o  (6.25) and (6.35).  As already d i s -  

cussed. the discont inui ty  i n  stress slope f o r  To = 0 i s  
due t o  the s t r a i n  component, and th i s  discont inui ty  d i e s  
away when (6.35) is used. 

f o r  the pz;raneters (6.23) and (6.25), while f igure  12 is  
the s m e  function i f  (6.24.) replaces (6.23). The effect of 
the thermal loading on the density is  t o  decrease the value 
f r o m  its i n i t i a l  equilibrium value w i t h  t i m e  so that  the 
f l u i d  i s  less dense near the boundary than it w a s  i n i t i a l l y .  

P f  one next t u rns  t o  the  parameter set (6.35), then 

Figure 11 i s  a p l o t  of the f l u i d  densi ty  T20(<,T,70) 

f igure  13 shows that  the f l u i d  density, after i n i t i a l l y  
decreasing f o r  7 = 0 rapidly increases  w i t h  7. 

A 

given i n  f igu res  14 t o  16. Figure 14. i s  the graph obtained 
whon p 2  i s  r?l.lnost zero, i .e.  using (6.23) and (6.25). 

Although the stress exh ib i t s  t h e  discontinuous slope i n  
t h i s  case a t  poi:?.ts 7 E= 7 i ts  magnitude is  much s m a l l e r  
than the corresponding s o l i d  par t ia l  stress shown i n  f igure  2. 

When (6.24.) replaces (6.233, the stress increases  ap- 
preciably i n  magnitude, and, w i t h  the exception of the 
discont inui ty  i n  i t s  slope a t  7 = 5 / f l  fo r  7 = 0, 

f igure  15, the stress i s  continuous and d i f f e ren t i ab le  w i t h  
respect  t o  t i m e .  

(6.351, t h e  f l u i d  par t ia l  stress becomes the dominant 

0 
W e  examine the f l u i d  partial  stress rx0 (5,7, To) +ao 

- 

0' 

0 

For a sol id  f l u i d  mixture w i t h  p roper t ies  s a t i s fy ing  

strestn conponent and, l i k e  the s o l i d  stress, i s  continuous 
and d i f f e ren t i ab le  everywhere. 

F ina l ly  we examine t h e  t o t a l  stress a t  5 = 1 versus 
7 f o r  7 0, .5,  1 and 2. Figures 16 t o  18 i l l u s t r a t e  
the behavior of f o r  the three para- 
metric sets chosen i n  t h i s  study. 

0 
oxo ( 5 ,  T) -I- rx0 ( 5 ,  T) 
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L e t  u s  now proceed t o  a discussion of the  zero order 
t e r m s  found for  problem E under the  miip loading (6.1) . 
As mentioned! earlier, t he  thermal d i s t r ibu t ion  of t he  un- 
coupled theory i s  the szme BOP problems A and 3 even though 
these problems are  physically d i s t i n c t .  

ha l f  space, 5 > 0, i s  i n i t i a l l y  a t  rest and. i s  constrained 
a t  the face 5 7: 0 so tha t  there is  no displacement and no 
velocity,  f l u i d  5i' solid., allowed. at t h e  boundary. A t  t h e  
7 r= 0 the  facc of the  half-space is heated according t o  
(6.1) and problem B is  the  stu&y of the  reaction of the 
half-space t o  t h i s  laad. 

The defect of the zero order theory i s  immediately 
apparent i n  problem B. The displacement and f l u i d  veloci ty  
f i e l d s ,  given i n  (4.19), (4..2O) are physically independent 
of each other,  i .e. , wo ( 5 , 7 ,  To) 

so l id  material propert ies  while V , ( S , T , ~ ~ )  is  characterized 
by Eluid propert ies  alone. The zero order theory for  t h i s  

The bound.z.ry coiiditions of problem B state t h a t  t he  

- 

depends only upon the  

problem, as i n  tha corresponding theory for  problem A, 
sho-',d tend t o  the thermoelnstic theory as 
d2 approach zero. 
comparison. 

7 for  the rznp loading (6.1) and for  5 = 1. Figure 19 
i s  the  thermoelastic s t r a i n  and f igure 20 t he  thermoelastic 

2 stress obtained w%en 
Y = 1. Unlike the elzstic d iscont inui t ies  found for  t he  
s t ress - f ree  half-space problem of [6]  and the  ramp problem 
of [ e ] ,  our s t r a i n  stress are coiitinuous a t  7 = 5, 
and a t  7 = 5 -:- 7 

both ho/% and oxo 
type found for pro???.em A. Again u n l i k e  problem A, however, 
the  s t r a i n  awo/a5 does not change with p2 or  s2 o r  

d2 
gardless of t he  f l u i d  properties.  

- 2 
p2, s , ct and 

This w i l l  a t  lens% give u s  a basis fo r  

Accordingly, we have p lo t s  of 3wo/a5 and oxo versus 

r= cy. .Y d2 z= 0 and when dl = -1, 
- 
p2 = 

In f a c t ,  the  slope discont inui ty  i n  0' 
a t  7 r= 5 for  7 = 0 i s  of t he  0 

so t h a t  the r e s u l t  shown i n  f igure 19 i s  the  same re- 
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I n  problem A we w e r e  @,le t o  obtain a c r i t e r i o n  
whereby the slope discont inui ty  i n  the s o l i d  p a r t i a l  stress 
would vanish. T h i s  w a s  expressed. by equation (6.34). No 
such equation can be found for  problem B so that  the response 
shown i n  f igure  20 is t yp ica l  for  a l l  values of 

d2. T h i s  again points  out the defects of the zero order 
theory for the mixture of so l id  and f lu id .  

It i s  reasonable t o  expect that  when the d i f fus ive  
for  a parameter is nonzero the first order terns w i l l  
y i e ld  a relation between material propert ies  such as that  
found for problem A. T h i s  is t o  be considered i n  a subse- 
quent publication. 

p2,  s2 and 
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